Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biomolecules ; 13(12)2023 12 02.
Article En | MEDLINE | ID: mdl-38136605

Improving nitrogen use efficiency (NUE) is one of the main ways of increasing plant productivity through genetic engineering. The modification of nitrogen (N) metabolism can affect the hormonal content, but in transgenic plants, this aspect has not been sufficiently studied. Transgenic birch (Betula pubescens) plants with the pine glutamine synthetase gene GS1 were evaluated for hormone levels during rooting in vitro and budburst under outdoor conditions. In the shoots of the transgenic lines, the content of indoleacetic acid (IAA) was 1.5-3 times higher than in the wild type. The addition of phosphinothricin (PPT), a glutamine synthetase (GS) inhibitor, to the medium reduced the IAA content in transgenic plants, but it did not change in the control. In the roots of birch plants, PPT had the opposite effect. PPT decreased the content of free amino acids in the leaves of nontransgenic birch, but their content increased in GS-overexpressing plants. A three-year pot experiment with different N availability showed that the productivity of the transgenic birch line was significantly higher than in the control under N deficiency, but not excess, conditions. Nitrogen availability did not affect budburst in the spring of the fourth year; however, bud breaking in transgenic plants was delayed compared to the control. The IAA and abscisic acid (ABA) contents in the buds of birch plants at dormancy and budburst depended both on N availability and the transgenic status. These results enable a better understanding of the interaction between phytohormones and nutrients in woody plants.


Betula , Glutamate-Ammonia Ligase , Betula/genetics , Betula/metabolism , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Glutamine/metabolism , Plant Growth Regulators/pharmacology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Nitrogen/metabolism , Gene Expression Regulation, Plant
2.
Plant Physiol Biochem ; 83: 285-91, 2014 Oct.
Article En | MEDLINE | ID: mdl-25201567

Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.


Amino Acids/metabolism , Bacillus subtilis/metabolism , Cytokinins/biosynthesis , Rhizome , Triticum , Rhizome/metabolism , Rhizome/microbiology , Triticum/metabolism , Triticum/microbiology
...